AI-1526-M.E.-CV-19

M.A./M.Sc. - (Previous)

Term End Examination, Mar.-Apr.-2021 MATHEMATICS

Differential Geometry of Manifolds, Paper-IV

Time: Three Hours]

[Maximum Marks: 100

Note: Answer any Five Question. All Question carry equal marks.

- 1. (a) Define differentiable manifold and show that the real projective space PR^n is differentiable manifold.
 - (b) State and prove Local immersion theorem.
- 2. Let (M, g) be a Riemann manifold with sectional curvature $k \ge k_0 > 0$. Then show that for any geodesic c in M, the distance between two conjugate points along c is $\le \frac{\pi}{\sqrt{k_0}}$
- 3. (a) Show that the tangent bundle of a Lie group is trivial $TG \cong G \times g$.
 - (b) Show that the range of the zero section of a vector bundle $E \rightarrow M$ is a submanifold of E.
- 4. (a) State and prove Schur's Theorem.
 - (b) Define the following with example:-
 - (i) Nijenhuis tensor
 - (ii) Conformal curvature tensor
 - (iii) Exterior derivative
 - (iv) Bundle homomorphim
- 5. Let $g: L \to Q$ be a surjective submersion which is proper, show that $g^{-1}(k)$ is compact in L for each compact $k \subset Q$ and let Q be connected. Then show that (L, P, Q) is fibre bundle.
- 6. State and prove Generalized Gauss and Mainardi-Codazzi equations.
- 7. Show that the circle $s' \subset \emptyset$ is a Lie group under complex multiplication and the map

$$z = e^{i\theta} \rightarrow \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & I_{n-2} \end{bmatrix}$$

Is a Lie group homomorphism into SO(n).

- 8. (a) Prove that every vector bundle of dimension n over V is associated to a principal bundle over V with group GL(n, R).
 - (b) Define the following:-
 - (i) Tangent bundle
 - (ii) Induced bundle
 - (iii) Principle fibre bundle
- 9. (a) Prove that Riemannian geodesic is Locally minimizing.
 - (b) State and prove First variation formulae.
- 10. (a) Show that tangent bundle is a vector Bundle.
 - (b) Prove that $X^T = KMOTX$ for vector Bundle Homomorphism.